
1

Create with Code
Unit 2 Lesson Plans

© Unity 2021 Create with Code - Unit 2

2

2.1 Player Positioning

Steps:
Step 1: Create a new Project for Prototype 2

Step 2: Add the Player, Animals, and Food

Step 3: Get the user’s horizontal input

Step 4: Move the player left-to-right

Step 5: Keep the player inbounds

Step 6: Clean up your code and variables

Example of project by end of lesson

Length: 60 minutes

Overview: You will begin this unit by creating a new project for your second Prototype
and getting basic player movement working. You will first choose which
character you would like, which types of animals you would like to interact
with, and which food you would like to feed those animals. You will give the
player basic side-to-side movement just like you did in Prototype 1, but then
you will use if-then statements to keep the Player in bounds.

Project
Outcome:

The player will be able to move left and right on the screen based on the
user’s left and right key presses, but will not be able to leave the play area on
either side.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Adjust the scale of an object proportionally in order to get it to the size you

want
- More comfortably use the GetInput function in order to use user input to

control an object
- Create an if-then statement in order to implement basic logic in your

project, including the use of greater than (>) and less than (<) operators
- Use comments and automatic formatting in order to make their code more

clean and readable to other programmers

© Unity 2021 Create with Code - Unit 2

3

Step 1: Create a new Project for Prototype 2
The first thing we need to do is create a new project and import the Prototype 2 starter files.
1. Open Unity Hub and create an empty “Prototype 2”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 2 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. From the Project window, open the Prototype 2
scene and delete the SampleScene

4. In the top-right of the Unity Editor, change your
Layout from Default to your custom layout

- Don’t worry: Unit 2 has far more
assets than Unit 1, so the package
might take a while to import.

Step 2: Add the Player, Animals, and Food
Let’s get all of our objects positioned in the scene, including the player, animals, and food.

1. If you want, drag a different material from Course
Library > Materials onto the Ground object

2. Drag 1 Human, 3 Animals, and 1 Food object into
the Hierarchy

3. Rename the human “Player”, then reposition the
animals and food so you can see them

4. Adjust the XYZ scale of the food so you can easily
see it from above

- New Technique: Adjusting Scale
- Warning: Don’t choose people for

anything but the player, they don’t have
walking animations

- Tip: Remember, dragging objects into
the hierarchy puts them at the origin

© Unity 2021 Create with Code - Unit 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/bfd26de3-a68a-4a16-8cf6-8eacf2bb7f75/Prototype%202%20-%20Starter%20Files.zip?_ga=2.29238268.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

© Unity 2021 Create with Code - Unit 2

5

Step 3: Get the user’s horizontal input
If we want to move the Player left-to-right, we need a variable tracking the user’s input.

1. In your Assets folder, create a “Scripts” folder, and
a “PlayerController” script inside

2. Attach the script to the Player and open it
3. At the top of PlayerController.cs, declare a new

public float horizontalInput
4. In Update(), set horizontalInput =

Input.GetAxis(“Horizontal”), then test to make sure
it works in the inspector

- Warning: Make sure to create your
Scripts folder inside of the assets
folder

- Don’t worry: We’re going to get VERY
familiar with this process

- Warning: If you misspell the script
name, just delete it and try again.

public float horizontalInput;

void Update()
{
horizontalInput = Input.GetAxis("Horizontal");

}

Step 4: Move the player left-to-right
We have to actually use the horizontal input to translate the Player left and right.

1. Declare a new public float speed = 10.0f;
2. In Update(), Translate the player side-to-side based

on horizontalInput and speed

- Tip: You can look at your old scripts for
code reference

public float horizontalInput;
public float speed = 10.0f;

void Update()
{
horizontalInput = Input.GetAxis("Horizontal");
transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);

}

© Unity 2021 Create with Code - Unit 2

6

Step 5: Keep the player inbounds
We have to prevent the player from going off the side of the screen with an if-then statement.

1. In Update(), write an if-statement checking if the
player’s left X position is less than a certain value

2. In the if-statement, set the player’s position to its
current position, but with a fixed X location

- Tip: Move the player in scene view to
determine the x positions of the left
and right bounds

- New Concept: If-then statements
- New Concept: Greater than > and Less

Than < operators

void Update() {
if (transform.position.x < -10) {
transform.position = new Vector3(-10, transform.position.y, transform.position.z);

}
}

Step 6: Clean up your code and variables
We need to make this work on the right side, too, then clean up our code.

1. Repeat this process for the right side of the
screen

2. Declare new xRange variable, then replace the
hardcoded values with them

3. Add comments to your code

- Warning: Whenever you see hardcoded
values in the body of your code, try to
replace it with a variable

- Warning: Watch your greater than /
less than signs!

public float xRange = 10;

void Update()
{
// Keep the player in bounds
if (transform.position.x < -10 -xRange)
{
transform.position = new Vector3(-10 -xRange, transform.position.y, transform.position.z);

}
if (transform.position.x > xRange)
{
transform.position = new Vector3(xRange, transform.position.y, transform.position.z);

}
}

© Unity 2021 Create with Code - Unit 2

7

Lesson Recap
New
Functionality

● The player can move left and right based on the user’s left and right key
presses

● The player will not be able to leave the play area on either side

New Concepts
and Skills

● Adjust object scale
● If-statements
● Greater/Less than operators

Next Lesson ● We’ll learn how to create and throw endless amounts of food to feed our
animals!

© Unity 2021 Create with Code - Unit 2

8

2.2 Food Flight

Steps:
Step 1: Make the projectile fly forwards

Step 2: Make the projectile into a prefab

Step 3: Test for spacebar press

Step 4: Launch projectile on spacebar press

Step 5: Make animals into prefabs

Step 6: Destroy projectiles offscreen

Step 7: Destroy animals offscreen

Example of project by end of lesson

Length: 70 minutes

Overview: In this lesson, you will allow the player to launch the projectile through the
scene. First you will write a new script to send the projectile forwards. Next
you will store the projectile along with all of its scripts and properties using
an important new concept in Unity called Prefabs. The player will be able to
launch the projectile prefab with a tap of the spacebar. Finally, you will add
boundaries to the scene, removing any objects that leave the screen.

Project
Outcome:

The player will be able to press the Spacebar and launch a projectile prefab
into the scene, which destroys itself when it leaves the game’s boundaries.
The animals will also be removed from the scene when they leave the game
boundaries.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Transform a game object into a prefab that can be used as a template
- Instantiate Prefabs to spawn them into the scene
- Override Prefabs to update and save their characteristics
- Get user input with GetKey and KeyCode to test for specific keyboard

presses
- Apply components to multiple objects at once to work as efficiently as

possible

© Unity 2021 Create with Code - Unit 2

9

Step 1: Make the projectile fly forwards
The first thing we must do is give the projectile some forward movement so it can zip across
the scene when it’s launched by the player.
1. Create a new “MoveForward” script, attach it to the

food object, then open it
2. Declare a new public float speed variable;
3. In Update(), add

transform.Translate(Vector3.forward *
Time.deltaTime * speed);, then save

4. In the Inspector, set the projectile’s speed variable,
then test

- Don’t worry: You should all be super
familiar with this method now… getting
easier, right?

public float speed = 40.0f;

void Update() {
transform.Translate(Vector3.forward * Time.deltaTime * speed);

}

Step 2: Make the projectile into a prefab
Now that our projectile has the behavior we want, we need to make it into a prefab it so it can
be reused anywhere and anytime, with all its behaviors included.
1. Create a new “Prefabs” folder, drag your food into

it, and choose Original Prefab
2. In PlayerController.cs, declare a new public

GameObject projectilePrefab; variable
3. Select the Player in the hierarchy, then drag the

object from your Prefabs folder onto the new
Projectile Prefab box in the inspector

4. Try dragging the projectile into the scene at
runtime to make sure they fly

- New Concept: Prefabs
- New Concept: Original vs Variant

Prefabs
- Tip: Notice that this your projectile

already has a move script if you drag it
in

© Unity 2021 Create with Code - Unit 2

10

Step 3: Test for spacebar press
Now that we have a projectile prefab assigned to PlayerController.cs, the player needs a way to
launch it with the space bar.
1. In PlayerController.cs, in Update(), add an

if-statement checking for a spacebar press:
if (Input.GetKeyDown(KeyCode.Space)) {

2. Inside the if-statement, add a comment saying
that you should // Launch a projectile from the
player

- Tip: Google a solution. Something like
“How to detect key press in Unity”

- New Functions: Input.GetKeyDown,
GetKeyUp, GetKey

- New Function: KeyCode

void Update()
{

if (Input.GetKeyDown(KeyCode.Space))
{

// Launch a projectile from the player
}

}

Step 4: Launch projectile on spacebar press
We’ve created the code that tests if the player presses spacebar, but now we actually need
spawn a projectile when that happens
1. Inside the if-statement, use the Instantiate

method to spawn a projectile at the player’s
location with the prefab’s rotation

- New Concept: Instantiation

if (Input.GetKeyDown(KeyCode.Space))
{
// Launch a projectile from the player
Instantiate(projectilePrefab, transform.position, projectilePrefab.transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

11

Step 5: Make animals into prefabs
The projectile is now a prefab, but what about the animals? They need to be prefabs too, so they
can be instantiated during the game.
1. Rotate all animals on the Y axis by 180 degrees to

face down
2. Select all three animals in the hierarchy and Add

Component > Move Forward
3. Edit their speed values and test to see how it

looks
4. Drag all three animals into the Prefabs folder,

choosing “Original Prefab”
5. Test by dragging prefabs into scene view during

gameplay

- Tip: You can change all animals at
once by selecting all them in the
hierarchy while holding Cmd/Ctrl

- Tip: Adding a Component from
inspector is same as dragging it on

- Warning: Remember, anything you
change while the game is playing will
be reverted when you stop it

Step 6: Destroy projectiles offscreen
Whenever we spawn a projectile, it drifts past the play area into eternity. In order to improve
game performance, we need to destroy them when they go out of bounds.
1. Create “DestroyOutOfBounds” script and apply it

to the projectile
2. Add a new private float topBound variable and

initialize it = 30;
3. Write code to destroy if out of top bounds if

(transform.position.z > topBound) {
Destroy(gameObject); }

4. In the Inspector Overrides drop-down, click Apply
all to apply it to prefab

- Warning: Too many objects in the
hierarchy will slow the game

- Tip: Google “How to destroy
gameobject in Unity”

- New Function: Destroy
- New Technique: Override prefab

private float topBound = 30;

void Update() {
if (transform.position.z > topBound) {
Destroy(gameObject); }}

© Unity 2021 Create with Code - Unit 2

12

Step 7: Destroy animals offscreen
If we destroy projectiles that go out of bounds, we should probably do the same for animals. We
don’t want critters getting lost in the endless abyss of Unity Editor...
1. Create a new private float lowerBound variable

and initialize it = -10;
2. Create else-if statement to check if objects are

beneath lowerBound:
else if (transform.position.z > topBound)

3. Apply the script to all of the animals, then Override
the prefabs

- New Function: Else-if statement
- Warning: Don’t make topBound too

tight or you’ll destroy the animals
before they before they can spawn

private float topBound = 30;
private float lowerBound = -10;

void Update() {
if (transform.position.z > topBound)
{

Destroy(gameObject);
} else if (transform.position.z < lowerBound) {

Destroy(gameObject);
}

}

Lesson Recap
New
Functionality

● The player can press the Spacebar to launch a projectile prefab,
● Projectile and Animals are removed from the scene if they leave the screen

New Concepts
and Skills

● Create Prefabs
● Override Prefabs
● Test for Key presses
● Instantiate objects
● Destroy objects
● Else-if statements

Next Lesson ● Instead of dropping all these animal prefabs onto the scene, we’ll create a
herd of animals roaming the plain!

© Unity 2021 Create with Code - Unit 2

13

2.3 Random Animal Stampede

Steps:
Step 1: Create a spawn manager

Step 2: Spawn an animal if S is pressed

Step 3: Spawn random animals from array

Step 4: Randomize the spawn location

Step 5: Change the perspective of the camera

Example of project by end of lesson

Length: 50 minutes

Overview: Our animal prefabs walk across the screen and get destroyed out of bounds,
but they don’t actually appear in the game unless we drag them in! In this
lesson we will allow the animals to spawn on their own, in a random location
at the top of the screen. In order to do so, we will create a new object and a
new script to manage the entire spawning process.

Project
Outcome:

When the user presses the S key, a randomly selected animal will spawn at a
random position at the top of the screen, walking towards the player.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create an empty object with a script attached
- Use arrays to create an accessible list of objects or values
- Use integer variables to determine an array index
- Randomly generate values with Random.Range in order to randomize

objects in arrays and spawn positions
- Change the camera’s perspective to better suit your game

© Unity 2021 Create with Code - Unit 2

14

Step 1: Create a spawn manager
If we are going to be doing all of this complex spawning of objects, we should have a dedicated
script to manage the process, as well as an object to attach it to.
1. In the Hierarchy, create an Empty object called

“SpawnManager”
2. Create a new script called “SpawnManager”, attach it to

the Spawn Manager, and open it
3. Declare new public GameObject[] animalPrefabs;
4. In the Inspector, change the Array size to match your

animal count, then assign your animals by dragging
them from the Project window into the empty slots

Note: Make sure you drag them from the Project
window; not the Hierarchy! If you're going to spawn
objects, you need to make sure you're using Prefabs,
which are stored in the Project window.

- Tip: Empty objects can be
used to store objects or used
to store scripts

- Warning: You can use
spaces when naming your
empty object, but make sure
your script name uses
PascalCase!

- New Concept: Arrays

© Unity 2021 Create with Code - Unit 2

15

Step 2: Spawn an animal if S is pressed
We’ve created an array and assigned our animals to it, but that doesn’t do much good until we
have a way to spawn them during the game. Let’s create a temporary solution for choosing and
spawning the animals.
1. In Update(), write an if-then statement to

instantiate a new animal prefab at the top of the
screen if S is pressed

2. Declare a new public int animalIndex and
incorporate it in the Instantiate call, then test
editing the value in the Inspector

- New Concept: Array Indexes
- Tip: Array indexes start at 0 instead of

1. An array of 3 animals would look like
[0, 1, 2]

- New Concept: Integer Variables
- Don’t worry: We’ll declare a new

variable for the Vector3 and index later

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),
animalPrefabs[animalIndex].transform.rotation);

}
}

Step 3: Spawn random animals from array
We can spawn animals by pressing S, but doing so only spawns an animal at the array index we
specify. We need to randomize the selection so that S can spawn a random animal based on
the index, without our specification.

1. In the if-statement checking if S is pressed,
generate a random int animalIndex between 0 and
the length of the array

2. Remove the global animalIndex variable, since it is
only needed locally in the if-statement

- Tip: Google “how to generate a random
integer in Unity”

- New Function: Random.Range
- New Function: .Length
- New Concept: Global vs Local

variables

public GameObject[] animalPrefabs;
public int animalIndex;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

int animalIndex = Random.Range(0, animalPrefabs.Length);
Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20),

animalPrefabs[animalIndex].transform.rotation); }}

© Unity 2021 Create with Code - Unit 2

16

Step 4: Randomize the spawn location
We can press S to spawn random animals from animalIndex, but they all pop up in the same
place! We need to randomize their spawn position, so they don’t march down the screen in a
straight line.

1. Replace the X value for the Vector3 with
Random.Range(-20, 20), then test

2. Within the if-statement, make a new local Vector3
spawnPos variable

3. At the top of the class, create private float
variables for spawnRangeX and spawnPosZ

- Tip: Random.Range for floats is
inclusive of all numbers in the range,
while Random.Range for integers is
exclusive!

- Tip: Keep using variables to clean your
code and make it more readable

private float spawnRangeX = 20;
private float spawnPosZ = 20;

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

// Randomly generate animal index and spawn position
Vector3 spawnPos = new Vector3(Random.Range(-spawnRangeX, spawnRangeX),
0, spawnPosZ);
int animalIndex = Random.Range(0, animalPrefabs.Length);
Instantiate(animalPrefabs[animalIndex], spawnPos,
animalPrefabs[animalIndex].transform.rotation); }}

© Unity 2021 Create with Code - Unit 2

17

Step 5: Change the perspective of the camera
Our Spawn Manager is coming along nicely, so let’s take a break and mess with the
camera.Changing the camera’s perspective might offer a more appropriate view for this
top-down game.

1. Toggle between Perspective and Isometric view in
Scene view to appreciate the difference

2. Select the camera and change the Projection from
“Perspective” to “Orthographic”

- New: Orthographic vs Perspective
Camera Projection

- Tip: Test the game in both views to
appreciate the difference

Lesson Recap
New
Functionality

● The player can press the S to spawn an animal
● Animal selection and spawn location are randomized
● Camera projection (perspective/orthographic) selected

New Concepts
and Skills

● Spawn Manager
● Arrays
● Keycodes
● Random generation
● Local vs Global variables
● Perspective vs Isometric projections

Next Lesson ● Using collisions to feed our animals!

© Unity 2021 Create with Code - Unit 2

18

2.4 Collision Decisions

Steps:
Step 1: Make a new method to spawn animals

Step 2: Spawn the animals at timed intervals

Step 3: Add collider and trigger components

Step 4: Destroy objects on collision

Step 5: Trigger a “Game Over” message

Example of project by end of lesson

Length: 50 minutes

Overview: Our game is coming along nicely, but there are are some critical things we
must add before it’s finished. First off, instead of pressing S to spawn the
animals, we will spawn them on a timer so that they appear every few
seconds. Next we will add colliders to all of our prefabs and make it so
launching a projectile into an animal will destroy it. Finally, we will display a
“Game Over” message if any animals make it past the player.

Project
Outcome:

The animals will spawn on a timed interval and walk down the screen,
triggering a “Game Over” message if they make it past the player. If the
player hits them with a projectile to feed them, they will be destroyed.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Repeat functions on a timer with InvokeRepeating
- Write custom functions to make your code more readable
- Edit Box Colliders to fit your objects properly
- Detect collisions and destroy objects that collide with each other
- Display messages in the console with Debug Log

© Unity 2021 Create with Code - Unit 2

https://docs.google.com/document/d/1hnzwRKIMzMDAgqN6B6qXfuQEUBHHOITFUuI8io1-SDY/edit#heading=h.jpvf7062snkj

19

Step 1: Make a new method to spawn animals
Our Spawn Manager is looking good, but we’re still pressing S to make it work! If we want the
game to spawn animals automatically, we need to write our very first custom function.
1. In SpawnManager.cs, create a new void

SpawnRandomAnimal() {} function beneath
Update()

2. Cut and paste the code from the if-then statement
to the new function

3. Call SpawnRandomAnimal(); if S is pressed

- New Concept: Custom Void Functions
- New Concept: Compartmentalization /

Abstraction

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

SpawnRandomAnimal();
int animalIndex … (Cut and Pasted Below) }}

void SpawnRandomAnimal() {
int animalIndex = Random.Range(0, animalPrefabs.Length);
Vector3 spawnpos = new Vector3(Random.Range(-xSpawnRange,

xSpawnRange), 0, zSpawnPos);
Instantiate(animalPrefabs[animalIndex], new Vector3(0, 0, 20) spawnpos,

animalPrefabs[animalIndex].transform.rotation);
}

Step 2: Spawn the animals at timed intervals
We’ve stored the spawn code in a custom function, but we’re still pressing S! We need to spawn
the animals on a timer, so they randomly appear every few seconds.

1. In Start(), use InvokeRepeating to spawn the
animals based on an interval, then test.

2. Remove the if-then statement that tests for S
being pressed

3. Declare new private startDelay and spawnInterval
variables then playtest and tweak variable values

- Tip: Google “Repeating function in
Unity”

- New Function: InvokeRepeating

private float startDelay = 2;
private float spawnInterval = 1.5f;

void Start() {
InvokeRepeating("SpawnRandomAnimal", startDelay, spawnInterval); }

void Update() {
if (Input.GetKeyDown(KeyCode.S)) {

SpawnRandomAnimal(); } }

© Unity 2021 Create with Code - Unit 2

20

Step 3: Add collider and trigger components
Animals spawn perfectly and the player can fire projectiles at them, but nothing happens when
the two collide! If we want the projectiles and animals to be destroyed on collision, we need to
give them some familiar components - “colliders.”

1. Double-click on one of the animal prefabs, then
Add Component > Box Collider

2. Click Edit Collider, then drag the collider handles
to encompass the object

3. Check the “Is Trigger” checkbox
4. Repeat this process for each of the animals and

the projectile
5. Add a RigidBody component to the projectile and

uncheck “use gravity”

- New Component: Box Colliders
- Warning: Avoid Box Collider 2D
- Tip: Use isometric view and the

gizmos to cycle around and edit the
collider with a clear perspective

- Tip: For the Trigger to work, at least
one of the objects needs a rigidbody
component

Step 4: Destroy objects on collision
Now that the animals and the projectile have Box Colliders with triggers, we need to code a new
script in order to destroy them on impact.

1. Create a new DetectCollisions.cs script, add it to
each animal prefab, then open it

2. Before the final } add OnTriggerEnter function
using autocomplete

3. In OnTriggerEnter, put Destroy(gameObject);, then
test

4. In OnTriggerEnter, put Destroy(other.gameObject);

- New Concept: Overriding Functions
- New Function: OnTriggerEnter
- Tip: The “other” in OnTriggerEnter

refers to the collider of the other object
- Tip: Use VS’s Auto-Complete feature

for OnTriggerEnter and any/all override
functions

void OnTriggerEnter(Collider other) {
Destroy(gameObject);
Destroy(other.gameObject); }

© Unity 2021 Create with Code - Unit 2

21

Step 5: Trigger a “Game Over” message
The player can defend their field against animals for as long as they wish, but we should let
them know when they’ve lost with a “Game Over” message if any animals get past the player.

1. In DestroyOutOfBounds.cs, in the else-if condition
that checks if the animals reach the bottom of the
screen, add a Game Over messsage:
Debug.Log(“Game Over!”)

2. Clean up your code with comments
3. If using Visual Studio, Click Edit > Advanced >

Format document to fix any indentation issues
(On a Mac, click Edit > Format > Format Document)

- New Functions: Debug.Log,
LogWarning, LogError

- Tip: Tweak some values to adjust the
difficulty of your game. It might too
easy!

void Update() {
if (transform.position.z > topBound)
{

Destroy(gameObject);
} else if (transform.position.z < lowerBound)
{

Debug.Log("Game Over!");
Destroy(gameObject);

}
}

Lesson Recap
New
Functionality

● Animals spawn on a timed interval and walk down the screen
● When animals get past the player, it triggers a “Game Over” message
● If a projectile collides with an animal, both objects are removed

New Concepts
and Skills

● Create custom methods/functions
● InvokeRepeating() to repeat code
● Colliders and Triggers
● Override functions
● Log Debug messages to console

© Unity 2021 Create with Code - Unit 2

22

Challenge 2
Play Fetch

Challenge
Overview:

Use your array and random number generation skills to program this challenge
where balls are randomly falling from the sky and you have to send your dog
out to catch them before they hit the ground. To complete this challenge, you
will have to make sure your variables are assigned properly, your if-statements
are programmed correctly, your collisions are being detected perfectly, and
that objects are being generated randomly.

Challenge
Outcome:

- A random ball (of 3) is generated at a random x position above the screen
- When the user presses spacebar, a dog is spawned and runs to catch the

ball
- If the dog collides with the ball, the ball is destroyed
- If the ball hits the ground, a “Game Over” debug message is displayed
- The dogs and balls are removed from the scene when they leave the screen

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Assigning variables and arrays in the inspector
- Editing colliders to the appropriate size
- Testing xyz positions with greater/less than operators in if-else statements
- Randomly generating values and selecting objects from arrays

Challenge
Instructions:

- Open your Prototype 2 project
- Download the "Challenge 2 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 2 > Instructions folder, use the

"Challenge 2 - Instructions" and “Outcome” video as a guide to complete the
challenge

© Unity 2021 Create with Code - Unit 2

23

Challenge Task Hint

1 Dogs are spawning at
the top of the screen

Make the balls spawn from
the top of the screen

Click on the Spawn Manager object
and look at the “Ball Prefabs” array

2 The player is spawning
green balls instead of
dogs

Make the player spawn dogs Click on the Player object and look at
the “Dog Prefab” variable

3 The balls are
destroyed if anywhere
near the dog

The balls should only be
destroyed when coming into
direct contact with a dog

Check out the box collider on the dog
prefab

4 Nothing is being
destroyed off screen

Balls should be destroyed
when they leave the bottom
of the screen and dogs
should be destroyed when
they leave the left side of the
screen

In the DestroyOutOfBounds script,
double-check the lowerLimit and
leftLimit variables, the greater than vs
less than signs, and which position
(x,y,z) is being tested

5 Only one type of ball is
being spawned

Ball 1, 2, and 3 should be
spawned randomly

In the SpawnRandomBall() method,
you should declare a new random int
index variable, then incorporate that
variable into the Instantiate call

Bonus Challenge Task Hint

X The spawn interval is
always the same

Make the spawn interval a
random value between 3
seconds and 5 seconds

Set the spawnInterval value to a new
random number between 3 and 5
seconds in the SpawnRandomBall
method

Y The player can “spam”
the spacebar key

Only allow the player to
spawn a new dog after a
certain amount of time has
passed

Search for Time.time in the Unity
Scripting API and look at the
example. And don’t worry if you can’t
figure it out - this is a very difficult
challenge.

© Unity 2021 Create with Code - Unit 2

24

Challenge Solution

1 Select the Spawn Manager object and expand the “Ball Prefabs” array, then drag the Ball 1, 2, 3
prefabs from Assets > Challenge 2 > Prefabs onto Element 0, 1, 2

2 Select the Player object and drag the Dog prefab from Assets > Challenge 2 > Prefabs onto the
“Dog Prefab” variable

3 Double-click on the Dog prefab, then in the Box Collider component, click Edit Collider, and
reduce the collider to be the same size as the dog

4 In DestroyOutOfBoundsX.cs, make the leftLimit a negative value, change the greater than to a
less than when testing the x position, and test the y value instead of the z for the bottom limit

private float leftLimit = -30;

private float bottomLimit = -5;

void Update() {

if (transform.position.x > < leftLimit) {

Destroy(gameObject);

} else if (transform.position.z y < bottomLimit) {

Destroy(gameObject);

}

}

© Unity 2021 Create with Code - Unit 2

25

5 In the SpawnRandomBall() method, declare a new random int index variable between 0 and the
length of the Array, then incorporate that index variable into the the Instantiate call

void SpawnRandomBall ()
{
// Generate random ball index and random spawn position
int index = Random.Range(0, ballPrefabs.Length);
Vector3 spawnPos = new Vector3(Random.Range(spawnXLeft, spawnXRight), spawnPosY, 0);

// instantiate ball at random spawn location
Instantiate(ballPrefabs[0 index], spawnPos, ballPrefabs[0 index].transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

26

Bonus Challenge Solution

X1 In SpawnManagerX, the “InvokeRepeating” method will not work to accomplish this, since it is
only capable of calling a single, unchanging method at a pre-set spawnInterval. Instead, we
could use the simpler “Invoke” method (which does not specify a spawnInterval), and then in
the in SpawnRandomBall() method, randomly reset startDelay using Random.Range() and
re-call the SpawnRandomBall() method again from within the method itself.

private float spawnInterval = 4.0f;

void Start ()

{

InvokeRepeating("SpawnRandomBall", startDelay, spawnInterval);

}

void SpawnRandomBall ()

{

startDelay = Random.Range(3, 5);

...

Invoke("SpawnRandomBall", startDelay);

}

Y1 In PlayerControllerX.cs, declare and initialize new fireRate and nextFire variables. Your
“fireRate” will represent the time the player has to wait in seconds, and the nextFire variable
will indicate the time (in seconds since the game started) at which the player will be able to fire
again (starting at 0.0)

public GameObject dogPrefab;

private float fireRate = 1; // time the player has to wait to fire again

private float nextFire = 0; // time since start after which player can fire again

Y2 In the if-statement checking if the player pressed spacebar, add a new condition to check that
Time.time (the time in seconds since the game started) is greater than nextFire (which
represents the time after which the player is allowed to fire. If so, nextFire should be reset to
the current time plus the fireRate.

// On spacebar press, if enough time has elapsed since last fire, send dog

if (Input.GetKeyDown(KeyCode.Space) && Time.time > nextFire)

{

nextFire = Time.time + fireRate; // reset nextFire to current time + fireRate

Instantiate(dogPrefab, transform.position, dogPrefab.transform.rotation);

}

© Unity 2021 Create with Code - Unit 2

27

Unit 2 Lab
New Project with Primitives
Steps:
Step 1: Create a new Unity Project

Step 2: Create a background plane

Step 3: Create primitive Player and material

Step 4: Position camera based on project type

Step 5: Enemies, obstacles, and projectiles

Step 6: Export a Unity Package backup file

Example of progress by end of lab

Length: 60 minutes

Overview: You will create and set up the project that will soon transform into your very
own Personal Project. For now, you will use “primitive” shapes (such as
spheres, cubes, and planes) as placeholders for your objects so that you can
add functionality as efficiently as possible without getting bogged down by
graphics. To make it clear which object is which, you will also give each
object a unique colored material.

Project
Outcome:

All key objects are in the scene as primitive objects with the camera
positioned properly for your project type.

Learning
Objectives:

By the end of this lab, you will be able to:
- Create a simple plane as a background for your project
- Position the camera, background, and player appropriately depending on

the type of project you are creating
- Create primitive shapes to serve as placeholders for your GameObjects
- Create new colored materials and apply them to distinguish GameObjects

© Unity 2021 Create with Code - Unit 2

28

Step 1: Create a new Unity Project
Just like we did with the Prototype, the first thing we need to do is create a new blank project
1. Open Unity Hub and create an empty project

named “Personal Project” in your course directory
on the correct Unity version
If you forget how to do this, refer to Lesson 1.1,
step 1.

2. After Unity opens, select your custom Layout
3. In the Project window, Assets > Scenes, rename

“SampleScene” to “My Game”

- Tip: If there are multiple people with
the same name using the computer,
might want to add last initial

- Don’t worry: There will just be a Main
camera and directional light in there

Step 2: Create a background plane
To orient yourself in the scene and not feel like you’re floating around in mid-air, it’s always good
to start by adding a background / ground object
1. In the Hierarchy, Right-click > 3D Object > Plane to add a

plane to your scene
2. In the Plane’s Inspector, in the top-right of the Transform

component, click on the three dots icon > Reset
Note: the three dots will appear as a gear icon in older
versions of Unity.

3. Increase the XYZ scale of the plane to (5, 1, 5)
4. Adjust your position in Scene view so you have a good

view of the Plane

- Explanation: Working with
primitives - these are simple
objects that allow you to work
faster

© Unity 2021 Create with Code - Unit 2

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15

29

Step 3: Create primitive Player and material
Now that we have the empty plane object set up, we can add the star of the show: the player
object

1. In the Hierarchy, Right-click > 3D Object > Sphere, then
rename it “Player”

2. In Assets, Right-click > Create > Folder named
“Materials”

3. Inside “Materials”, Right-click > Create > Material and
rename it “Blue”

4. In Blue’s Inspector, click on the Albedo color box and
change it to a blue

5. Drag the material from your Assets onto the Player
object

- Tip: Using primitives doesn’t let
graphics distract you and get in
the way of core features,

- Explanation: Albedo is a reference
to astronomical light reflection
properties - but it’s basically just
the material’s color

- Warning: Stick with blue right now
so it’s easy to follow - you’ll be
replacing it later

Step 4: Position camera based on project type
Now that we have the player in there, we need the best view of it, depending on our type of
project

1. For a top-down game, position the camera at (0, 10, 0)
directly over the player and rotate it 90 degrees on the X
axis

2. For a side-view game, rotate the Plane by -90 degrees on
the X axis

3. For a third-person view game, move the camera up on the
Y and Z axes and increase its rotation on the X axis

- Tip: Side view looks like top
view, but it’ll make a big diff
when you apply gravity

- Don’t worry: You might not
know exact view yet - just go
with what’s in your design
doc

Top-down view Side-view Isometric view

© Unity 2021 Create with Code - Unit 2

30

Step 5: Enemies, obstacles, and projectiles
Now that we know how to make primitives, let’s go ahead and make one for each object in our
project

1. In the Hierarchy, create new Cubes, Spheres, and
Capsules for all other main objects, renaming
them, repositioning them, and scaling them

2. In your Materials folder, create new materials for as
many colors as you have unique objects, editing
their color to match their name, then apply those
materials to your objects

3. Position all of your objects in locations relative to
each other that make sense

- Tip: If you plan on having variants of
certain objects (e.g. multiple animals),
create dark/light shades of the same
color

- Tip: Good to make enemies red - easy
if everyone uses the same
conventions

Step 6: Export a Unity Package backup file
Since we’re going to be putting our hearts and souls into this project, it’s always good to make
backups

1. Save your Scene
2. In the Project window, Right-click on the

“Assets” folder > Export Package, then click
Export

3. Create a new “Backups” folder in your Personal
Project folder, then save it with your name and
the version number (e.g.
Carl_V0.1.unitypackage”)

- Explanation: The “include dependencies”
checkbox will include any files that are
tied to / used by anything else we’re
exporting

- Tip: This is the same file type that you
imported at the start of Prototype 1

© Unity 2021 Create with Code - Unit 2

31

Lesson Recap
New Progress ● New project for your Personal Project

● Camera positioned and rotated based on project type
● All key objects in scene with unique materials

New Concepts
and Skills

● Primitives
● Create new materials
● Export Unity packages

© Unity 2021 Create with Code - Unit 2

32

Quiz Unit 2
QUESTION CHOICES

1 If it says, “Hello there!” in the console, what was the
code used to create that message?

a. Debug(“Hello there!”);
b. Debug.Log("Hello there!");
c. Debug.Console(“Hello there!”);
d. Debug.Log(Hello there!);

2 If you want to destroy an object when its health reaches
0, what code would be best in the blank below?

a. health > 0
b. health.0
c. health < 1
d. health < 0private int health = 0;

void Update() {

if (__________) {

Destroy(gameObject);

}

}

3 The code below creates an error that says, “error
CS1503: Argument 1: cannot convert from
'UnityEngine.GameObject[]' to 'UnityEngine.Object'”.
What could you do to remove the errors?

a. On line 1, change
“GameObject[]” to
“GameObject”

b. On line 1, change
“enemyPrefabs” to
“enemyPrefabs[0]”

c. On line 3, change “Start()” to
“Update()”

d. On line 5, change
“enemyPrefabs” to
“enemyPrefabs[0]”

e. Either A or D
f. Both A and D together
g. Both B and C together

1. public GameObject[] enemyPrefabs;

2.

3. void Start()

4. {

5. Instantiate(enemyPrefabs);

6. }

© Unity 2021 Create with Code - Unit 2

33

4 Which comment best describes the following code? a. // If player collides with
another object, destroy player

b. // If enemy collides with
another object, destroy the
object

c. // If player collides with a
trigger, destroy trigger

d. // If player collides with
another object, destroy the
object

public class PlayerController : MonoBehaviour

{

// Comment

private void OnTriggerEnter(Collider other) {

Destroy(other.gameObject);

}

}

5 If you want to move the character up continuously as
the player presses the up arrow, what code would be
best in the two blanks below:

a. GetKey(KeyCode.UpArrow)
b. GetKeyDown(UpArrow)
c. GetKeyUp(KeyCode.Up)
d. GetKeyHeld(Vector3.Up)

if (Input.__________(__________))

{

transform.Translate(Vector3.up);

}

6 Read the documentation from the Unity Scripting API
and the code below. Which of the following are possible
values for the randomFloat and randomInt variables?

a. randomFloat = 100.0f;
randomInt = 0;

b. randomFloat = 100.0f;
randomInt = 100;

c. randomFloat = 50.5f;
randomInt = 100;

d. randomFloat = 0.0f;
randomInt = 50.5;

© Unity 2021 Create with Code - Unit 2

34

float randomFloat = Random.Range(0f, 100f);

int randomInt = Random.Range(0, 100);

7 You are trying to randomly spawn objects from an array.
However, when your game is running, you see in the
console that there was an “error at
Assets/Scripts/SpawnManager.cs:5.
IndexOutOfRangeException: Index was outside the
bounds of the array.” Which line of code should you edit
in order to resolve this problem and still retain the
random object functionality?

a. Line 2
b. Line 3
c. Line 4
d. Line 5

1. public GameObject[] randomObjects;

2.

3. void SpawnRandomObject() {

4. int objectIndex = Random.Range(0, 3);

5. Instantiate(randomObjects[objectIndex]);

6. }

8 If you have made changes to a prefab in the scene and
you want to apply those changes to all prefabs, what
should you click?

a. The “Create” drop-down at the
top of the Hierarchy

b. The “Open” button at the top of
the Inspector

c. The “Overrides” drop-down at
the top of the Inspector

d. The “Add Component” button
at the bottom of the Inspector

9 Read the documentation from the Unity Scripting API
below. Which of the following is a correct use of the
InvokeRepeating method?

a. InvokeRepeating(“Spawn, 0.5f,
1.0f”);

b. InvokeRepeating(“Spawn”, 0.5f,
1.0f);

c. InvokeRepeating(“Spawn",
gameObject, 1.0f);

d. InvokeRepeating(0.5f, 1.0f,
“Spawn”);

© Unity 2021 Create with Code - Unit 2

35

10 You’re trying to create some logic that will tell the user to
speed up if they’re going too slow or to slow down if
they’re going too fast. How should you arrange the lines
of code below to accomplish that?

a. 4, 6, 1, 2, 5, 9, 7, 8, 3

void Update()
{

if (speed < 10)
{Debug.Log(speedUp); }

else if (speed > 60) {
Debug.Log(slowDown); }
}

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";

b. 6, 1, 2, 5, 7, 8, 3, 4, 9

if (speed < 10) {
Debug.Log(speedUp); }
else if (speed > 60) {
Debug.Log(slowDown); }
private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
}

c. 7, 8, 3, 4, 6, 5, 2, 1, 9

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
if (speed < 10) {
Debug.Log(slowDown); }
else if (speed > 60) {
Debug.Log(speedUp); }
}

1. Debug.Log(speedUp); }

2. else if (speed > 60) {

3. private string speedUp = "Speed up!";

4. void Update() {

5. Debug.Log(slowDown); }

6. if (speed < 10) {

7. private float speed;

8. private string slowDown = "Slow down!";

9. }

© Unity 2021 Create with Code - Unit 2

36
d. 7, 8, 3, 4, 6, 1, 2, 5, 9

private float speed;
private string slowDown =
"Slow down!";
private string speedUp =
"Speed up!";
void Update() {
if (speed < 10) {
Debug.Log(speedUp); }
else if (speed > 60) {
Debug.Log(slowDown); }
}

© Unity 2021 Create with Code - Unit 2

37

Quiz Answer Key
ANSWER EXPLANATION

1 B Debug.Log() prints messages to the console and can accept String
parameters between quotation marks, such as “Hello there!”

2 C Since the “health” variable is an int, anything less than 1 would be “0”. The
sign for “less than” is “<”.

3 E “GameObject[]” is a GameObject array. You cannot instantiate an array, but
you can instantiate an object inside an array. So you could either remove the
array and have Instantiate use an individual object (option A) or you could
use an GameObject index of that Array (option D), but both would not work.

4 D Since it’s inside the PlayerController class, and it is destroying
other.gameObject, it is destroying something that the player collides with.

5 A “Input.GetKey” tests for the user holding down a key (as opposed to
KeyKeyDown, which test for a single press down of a Key).

6 A As it says in the documentation, Random.Range does not include the
maximum value for integers, but does include the maximum value for floats.
This means that randomInt cannot be 100, but randomFloat can be.

7 C Line 4, which generates the objectIndex, must be generating an index value
that is too high for the number of objects in the array. The best thing to do
would be to change it to “Random.Range(0, randomObjects.Length);

8 C The “Override” drop-down will allow you to apply any changes you’ve made to
your individual prefab to the original prefab object.

9 B According to the Scripting API, InvokeRepeating requires a string parameter,
then two floats.

10 D All variables should be declared first, then the void method, then the
if-condition telling them to speed up, then the else condition telling them to
slow down.

© Unity 2021 Create with Code - Unit 2

38

Bonus Features 2 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 2

39

Step 1: Overview
This tutorial outlines four potential bonus features for the Feed the Animals Prototype at varying
levels of difficulty:

● Easy: Vertical player movement
● Medium: Aggressive animals
● Hard: Game user interface
● Expert: Animal hunger bar

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 2

40

Step 2: Easy: Vertical player movement
Allow the player to move forward and backwards within a certain range.
This makes the game a bit more dynamic and allows for the addition of other features.

Step 3: Medium: Aggressive animals
Have animals that also spawn from the left and right side of the screen. If one of them hits you,
“Game Over” should be logged to the console.
This will make the game much more exciting and requires the player to stay on their toes,
especially if vertical movement is also implemented.

© Unity 2021 Create with Code - Unit 2

41

Step 5: Hard: Game user interface
At the start of the game, display in the console that the player’s Lives = 3 and Score = 0. If the
player feeds an animal, increase and display the Score. If the player misses an animal or is hit by
one, decrease and display the Lives. When the number of Lives reaches 0, log “Game Over” in the
console.

Step 6: Expert: Animal hunger bar
Display a “hunger bar” on top of each of the animals. Then, each time you feed one of them, the
hunger bar fills up a little. Each animal should require different amounts of food to successfully
“feed” them. They should only disappear after their hunger bars are full.

© Unity 2021 Create with Code - Unit 2

42

Step 7: Hints and solution walkthrough
Hints:

● Easy: Vertical player movement
○ Look at how we are doing the left and right movement range.

● Medium: Aggressive animals
○ Look at how we are currently spawning animals and doing collisions.

● Hard: Game user interface
○ You will need to update the score and lives in the DetectCollisions script, and update

the lives in the DestroyOutOfBounds script.
● Expert: Animal hunger bar

○ You will need to add a UI Slider object in World space Render Mode as a prefab for
each animal, then set the slider’s value through a script every time the animal is fed.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 2

https://connect-prd-cdn.unity.com/20210505/70ffeabd-706f-4556-b9a9-ea6bd8ba631a/Unit%202%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.197142511.1186801097.1620052249-59568313.1601905412

